Способы доказательства теоремы пифагора презентация. Презентация "применение теоремы пифагора". Другие доказательства теоремы Пифагора

Звёздные 17.12.2023
Звёздные

Различные способы доказательства теоремы Пифагора. Выполнила: ученица 8 «А»класса МБОУ «ООШ №26» г. Энгельса Люсина Алёна. Учитель: Еремеева Елена Борисовна

История теоремы. Чу-пей 500-200 лет до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы. В древнекитайской книге Чу-пей (англ.) (кит. 周髀算經) говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

История теоремы. Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

История теоремы. Согласно комментарию Прокла к Евклиду, Пифагор (годами жизни которого принято считать 570-490 гг. до н. э.) использовал алгебраические методы, чтобы находить пифагоровы тройки. Однако Прокл считал,что не существует явного упоминания,что Пифагор был автором теоремы. Однако, когда авторы, такие как Плутарх и Цицерон, пишут о теореме Пифагора, они пишут так, как будто авторство Пифагора было широко известным и несомненным.«Принадлежит ли эта формула лично перу Пифагора…, но мы можем уверенно считать, что она принадлежит древнейшему периоду пифагорейской математики». По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков. Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Формулировки теоремы. Теорема Пифагора: Сумма площадей квадратов, опирающихся на катеты (a и b), равна площади квадрата, построенного на гипотенузе (c). Геометрическая формулировка: Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Формулировки теоремы. Алгебраическая формулировка: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательства. На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Доказательство через равнодополняемость Рассмотрим прямоугольный треугольник с катетами a, b и гипотенузой c. Достроим треугольник до квадрата со стороной a+b так, как показано на рисунке справа. Площадь S этого квадрата равна (a+b) 2 . С другой стороны, этот квадрат составлен из четырёх равных прямоугольных треугольников, площадь каждого из которых равна ab, и квадрата со стороной c , поэтому S=4 · ab+c 2 =2ab+c 2 . Таким образом, (a+b) 2 =2ab+c 2 , откуда a 2 +b 2 =c 2 . Теорема доказана.

Доказательство Леонардо да Винчи Главные элементы доказательства - симметрия и движение. Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки A , мы усматриваем равенство заштрихованных фигур CAJI и DABG . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе.

Здесь изображена обычная Пифагорова фигура – прямоугольный треугольник ABC с построенными на его сторонах квадратами. К этой фигуре присоединены треугольники 1 и 2, равные исходному прямоугольному треугольнику. Доказательства методом достроения

«Колесо с лопастями» Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе. Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом.

Доказательство ан-Найризия В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника Здесь: ABC – прямоугольный треугольник с прямым углом C.

Доказательство Бхаскари Рисунок сопровождало лишь одно слово: СМОТРИ!

Доказательство Гарфилда Здесь три прямоугольных треугольника составляют трапецию. Поэтому площадь этой фигуры можно находить по формуле площади прямоугольной трапеции, либо как сумму площадей трех треугольников. В первом случае эта площадь равна во втором. Приравнивая эти выражения, получаем теорему Пифагора.

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. «Колесо с лопастями» Доказательство ан-Найризия Доказательство Гарфилда

Атанасян Л.С. ,Геометрия: учеб. для 7-9 кл. сред.шк./авт.-сост. Л.С. Атанасян, В.Ф.Бутузов и др.//.-М.: Просвещение,1994. Погорелов А.В., Геометрия: учебн. для 7-11 кл. общеобразоват. учреждений.-6-е изд.-М.: Просвещение, 1996. Энциклопедия для детей. Т.11. Математика /глав. ред. М.Д. Аксенова. м: Аванта +, 2002. Энциклопедический словарь юного математика /сост. А.П. Савин. -М.: Педагогика, 1989. http://bankreferatov.ru/ http://kvant.ru/ http://th p if.narod.ru/formul.html

История теоремы. Древний Китай Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: " Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.


Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. Древняя Индия


Кантор (крупнейший немецкий историк математики) считает, что равенство: 3² + 4² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея) По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3 м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра.


Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."




Великий ученый Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора неизвестно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. Вскоре, неугомонному воображению юного Пифагора стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым - Фалесом. Затем отправляется в путешествие и попадает в плен к вавилонскому царю Киру. В 530 г. до н.э. Кир двинулся в поход против племен в Средней Азии. И, пользуясь переполохом в городе, Пифагор сбежал на родину.


А на Самосе в то время царствовал тиран Поликрат. После нескольких месяцев притязаний со стороны Поликрата, Пифагор переселяется в Кротон. В Кротоне Пифагор учредил нечто вроде религиозно- этического братства или тайного монашеского ордена ("пифагорейцы"), члены которого обязывались вести так называемый пифагорейский образ жизни....Прошло 20 лет. Слава о братстве разнеслась по всему миру. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, Килон начинает борьбу с Пифагором, воспользовавшись поджогом его дома. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством.



Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Другие формулировки теоремы. У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол". В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так: "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".


Простейшее доказательство. Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для треугольника ABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах -по два.


Доказательство методом вычитания. Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие: 1. треугольники 1, 2, 3, 4; 2. прямоугольник 5; 3. прямоугольник 6 и квадрат 8; 4. прямоугольник 7 и квадрат 9;


Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на катетах. Этими частями будут: 1. прямоугольники 6 и 7; 2. прямоугольник 5; 3. прямоугольник 1(заштрихован); 4. прямоугольник 2(заштрихован); Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что: 1. прямоугольник 5 равновелик самому себе; 2. четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7; 3. прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);; 4. прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован); Теорема доказана


Доказательство Эйнштейна Точки E, C и F лежат на одной прямой; это следует из несложных расчётов градусной меры угла ECF (он развёрнутый). CD проводим перпендикулярно EF. Продолжены вверх левая и правая стороны квадрата, построенного на гипотенузе, до пересечения с EF; продолжена сторона ЕА до пересечения с CD. Соответственно равные треугольники одинаково пронумерованы.


В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними: FB = AB, BC = BD, а углы между ними равны как тупые углы со взаимно перпендикулярными сторонами. S ABD = 0,5 S BJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично S FBC=0,5 S ABFH (BF-общее основание, АВ-общая высота). Отсюда, учитывая, что S ABD= S FBC, имеем S BJLD= S ABFH. Аналогично, если вы проведёте отрезок АЕ используете равенство треугольников ВСК и АСЕ, то докажете, что S JCEL= S ACKG. Итак, S ABFH+ S ACKG= S BJLD+ S JCEL= S BCED, что и требовалось доказать. Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал". На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник JCEL - квадрату АGКС. Тогда сумма площадей квадратов на катетах будет равна площади квадрата на гипотенузе.





Вторая тайна – точно неустановленное количество доказательств знаменитой теоремы Пифагора Самосского. Именно по этому поводу я решила провести социологический опрос, который показал, что большинство людей старшего поколения согласны с существованием 250 доказательств, хотя мне из дополнительных источников известно, что существует более 350 доказательств этой теоремы, поэтому она даже попала в Книгу рекордов Гиннеса! Но, конечно же, принципиально различных идей в этих доказательствах используется сравнительно немного.


Третья тайна – это то, что теорема Пифагора является сегодня символом математики. Четвёртая тайна – теорема Пифагора представляет нам богатейший материал для обобщения – важнейшего вида мыслительной деятельности, основы теоретического мышления, которым в совершенстве владеют многие учёные. Здесь можно добавить, что от теоремы Пифагора можно перейти к другим теоремам.


Пятая тайна заключается в том, что некоторые исследователи приписывают Пифагору доказательство, которое Евклид приводил в первой книге своих «Начал». С другой стороны, Прокл (математик V в.) утверждал, что доказательство в «Началах» принадлежало самому Евклиду. Но всё- таки сегодня способ доказательства Пифагора остаётся неизвестным.


Шестая тайна – легенды о самом Пифагоре, человеке, который первым доказал эту теорему. Существует легенда, что когда Пифагор Самосский доказал свою теорему, он отблагодарил богов, принеся в жертву 100 быков. Также о гипнотических способностях учёного ходили легенды: будто он одним своим взглядом мог менять направление полёта птиц. А ещё рассказывали, что этого удивительного человека одновременно видели в разных городах, между которыми было несколько дней пути. И что ему якобы принадлежало «колесо фортуны», вращая которое, он не только предсказывал будущее, но и вмешивался, если это было необходимо, в ход событий.

Слайд 2

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах... Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Нам кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думается, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.

Слайд 3

Пифагор Самосский

(ок. 580 – ок. 500 г. до н.э.)

Слайд 4

Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов. Поэтому нам ничего не остается, как рассмотреть некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Сделать это полезно еще и потому, что в современных школьных учебниках дается алгебраическое доказательство теоремы. При этом бесследно исчезает первозданная геометрическая аура теоремы, теряется та нить Ариадны, которая вела древних мудрецов к истине, а путь этот почти всегда оказывался кратчайшим и всегда красивым». Теорема Пифагора гласит: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах». Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.

Слайд 5

Доказательства методом разложения

Существует целый ряд доказательств теоремы Пифагора, в которых квадраты, построенные на катетах и на гипотенузе, разрезаются так, что каждой части квадрата,построенного на гипотенузе, соответствует часть одного из квадратов, построенных на катетах. Во всех этих случаях для понимания доказательства достаточно одного взгляда на чертеж; рассуждение здесь может быть ограничено единственным словом: "Смотри!", как это делалось в сочинениях древних индусских математиков. Следует, однако, заметить, что на самом деле доказательство нельзя считать полным, пока мы не доказали равенства всех соответствующих друг другу частей. Это почти всегда довольно не трудно сделать, однако может (особенно при большом количестве частей) потребовать довольно продолжительной работы.

Слайд 6

Доказательство Эпштейна

Начнем с доказательства Эпштейна (рис.1) ; его преимуществом является то, что здесь в качестве составных частей разложения фигурируют исключительно треугольники. Чтобы разобраться в чертеже, заметим, что прямая CD проведена перпендикулярно прямой EF. Разложение на треугольники можно сделать и более наглядным, чем на рисунке.

Слайд 7

Доказательство Нильсена.

На рисунке вспомогательные линии изменены по предложению Нильсена.

Слайд 8

Доказательство Бетхера.

На рисунке дано весьма наглядное разложение Бетхера.

Слайд 9

Доказательство Перигаля.

В учебниках нередко встречается разложение указанное на рисунке (так называемое "колесо с лопастями"; это доказательство нашел Перигаль). Через центр O квадрата, построенного на большем катете, проводим прямые, параллельную и перпендикулярную гипотенузе. Соответствие частей фигуры хорошо видно из чертежа.

Слайд 10

Доказательство Гутхейля.

Изображенное на рисунке разложение принадлежит Гутхейлю; для него характерно наглядное расположение отдельных частей, что позволяет сразу увидеть, какие упрощения повлечет за собой случай равнобедренного прямоугольного треугольника.

Слайд 11

Доказательство 9 века н.э.

Ранее были представлены только такие доказательства, в которых квадрат, построенный на гипотенузе, с одной стороны, и квадраты, построенные на катетах, с другой, складывались из равных частей. Такие доказательства называются доказательствами при помощи сложения ("аддитивными доказательствами") или, чаще, доказательствами методом разложения. До сих пор мы исходили из обычного расположения квадратов, построенных на соответствующих сторонах треугольника, т. е. вне треугольника. Однако во многих случаях более выгодно другое расположение квадратов. На рисунке квадраты, построенные на катетах, размещены ступенями один рядом с другим. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты". Способ построения квадрата со стороной, равной гипотенузе, ясен из чертежа. Общая часть двух квадратов, построенных на катетах, и квадрата, построенного на гипотенузе, - неправильный заштрихованный пятиугольник 5.

Слайд 12

Присоединив к нему треугольники 1 и 2, получим оба квадрата, построенные на катетах; если же заменить треугольники 1 и 2 равными им треугольниками 3 и 4, то получим квадрат, построенный на гипотенузе. На рисунках ниже изображены два различных расположения близких к тому, которое дается на первом рисунке.

Слайд 13

Доказательства методом дополнения

Наряду с доказательствами методом сложения можно привести примеры доказательств при помощи вычитания, называемых также доказательствами методом дополнения. Общая идея таких доказательств заключается в следующем. От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах В-А=С и В1-А1=С1 часть А равновелика части А1, а часть В равновелика В1, то части С и С1 также равновелики.

Слайд 14

Поясним этот метод на примере. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3, равные исходному треугольнику 1. Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2, то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3, то останется квадрат, построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах. Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG, составляющий половину шестиугольника DABGFE, вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK, составляющим половину шестиугольника CAJKHB. Поэтому шестиугольники DABGFE и CAJKHB равновелики

Слайд 15

Другое доказательство методом вычитания

Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие:

Слайд 16

треугольники 1, 2, 3, 4; прямоугольник 5; прямоугольник 6 и квадрат 8; прямоугольник 7 и квадрат 9; Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на катетах. Этими частями будут: прямоугольники 6 и 7; прямоугольник 5; прямоугольник 1(заштрихован); прямоугольник 2(заштрихован); Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что: прямоугольник 5 равновелик самому себе; четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7; прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);; прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован); Доказательство закончено

Слайд 17

Упрощенное доказательство Евклида

Как в доказательствах методом разложения, так и при доказательстве евклидового типа можно исходить из любого расположения квадратов. Иногда при этом удается достигнуть упрощений. Пусть квадрат, построенный на одном из катетов (на рисунке это квадрат, построенный на большем катете), расположен с той же стороны катета, что и сам треугольник. Тогда продолжение противоположной катету стороны этого квадрата проходит через вершину квадрата, построенного на гипотенузе. Доказательство в этом случае оказывается совсем простым, т. к. здесь достаточно сравнить площади интересующих нас фигур с площадью одного треугольника(он заштрихован) - площадь этого треугольника равна половине площади квадрата и одновременно половине площади прямоугольника

Слайд 18

Доказательство Хоукинсa.

Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать. Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A"CB". Продолжим гипотенузу A"В" за точку A" до пересечения с линией АВ в точке D. Отрезок В"D будет высотой треугольника В"АВ. Рассмотрим теперь заштрихованный четырехугольник A"АВ"В. Его можно разложить на два равнобедренных треугольника САA" и СВВ" (или на два треугольника A"В"А и A"В"В). SCAA"=b²/2 SCBB"=a²/2 SA"AB"B=(a²+b²)/2 Треугольники A"В"А и A"В"В имеют общее основание с и высоты DA и DB, поэтому: SA"AB"B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2 Сравнивая два полученных выражения для площади, получим: a²+b²=c² Теорема доказана.

Слайд 19

Доказательство основанное на теории подобия.

В прямоугольном треугольника АВС проведем из вершины прямого угла высоту CD; тогда треугольник разобьется на два треугольника, также являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику. Это легко доказать, пользуясь первым признаком подобия(по двум углам). В самом деле, сразу видно что, кроме прямого угла, треугольники АВС и ACD имеют общий угол a, треугольники CBD и АВС - общий угол b. То, что малые треугольники также подобны друг другу, следует из того, что каждый из них подобен большому треугольнику. Впрочем, это можно установить и непосредственно.

Слайд 20

Другие доказательства теоремы Пифагора

Доказательства, основанные на использовании понятия равновеликости фигур. Аддитивные доказательства. Доказательства методом достроения Алгебраический метод доказательства. Доказательство Вальдхейма.

Слайд 21

Существует много доказательств теоремы Пифагора, проведенных как каждым из описанных методов, так и с помощью сочетания различных методов. Завершая обзор примеров различных доказательств, приведем еще рисунки, иллюстрирующие восемь способов, на которые имеются ссылки в «Началах» Евклида (рис. 16 – 23). На этих рисунках Пифагорова фигура изображена сплошной линией, а дополнительные построения – пунктирной.

Слайд 22

По этим рисункам попробуйте самостоятельно доказать теорему Пифагора.

Слайд 23

Заключение

В заключение отметим, что о теореме Пифагора, ее истории и многих других связанных с ней геометрических фактах имеется обширная литература.

Слайд 24

Список литературы:

1. Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959.2. Глейзер Г.И. История математики в школе. М., 1982.3. Еленьский Щ. По следам Пифагора. М., 1961.4. Литцман В. Теорема Пифагора. М., 1960.5. Скопец З.А. Геометрические миниатюры. М., 1990.

Посмотреть все слайды

Слайд 1

ПРЕЗЕНТАЦИЯ ПО ГЕОМЕТРИИ УЧИТЕЛЯ МАТЕМАТИКИ МБОУ ЖИРНОВСКАЯ СОШ ВОЛКОВОЙ ТАТЬЯНЫ ВАЛЕНТИНОВНЫ.

ГЕОМЕТРИЯ 8 класс. тема: Теорема Пифагора.

Слайд 2

ПОВТОРЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА.

Какой треугольник называется прямоугольным?

Как называются стороны прямоугольного треугольника?

Какие из треугольников являются прямоугольными?

№1 №3 №4 №5

Чем является сторона АВ в треугольнике №2?

Какая сторона прямоугольного треугольника называется гипотенузой?

Чем являются стороны АС и ВС в треугольнике №2?

Какие стороны прямоугольного треугольника называются катетами?

(фронтальная беседа)

Слайд 3

На какие два многоугольника разбит данный многоугольник ABCFЕ?

Каким свойством площадей необходимо воспользоваться, чтобы найти площадь многоугольника ABCFЕ?

С помощью каких формул можно найти площадь квадрата и площадь треугольника?

Слайд 4

Давным-давно в некоторой стране жила прекрасная принцесса и была она настолько прекрасной, что затмевала красотой всех своих подруг и свою старшую сестру, которая красотой не блистала. Старшая сестра завидовала принцессе и решила ей отомстить. Тогда она пошла к ведьме и попросила ее заколдовать принцессу. Ведьма не смогла ей отказать, но все же, ей стало жалко принцессу, поэтому ведьма придумала усыпить принцессу в башне до той поры, пока какой-нибудь принц не посмотрит на окно башни с такого места, чтобы расстояние от глаз принца до окна было 50 шагов.

И вот принцесса заснула крепким сном. Прошло много лет, но никто мне смог расколдовать принцессу, несмотря на то, что отец ее Король пообещал отдать принцессу в жены тому, кто спасет ее от пут сна.

ПРОБЛЕМНАЯ СИТУАЦИЯ.

Сказка – задача:

Слайд 5

И вот, в один прекрасный день в этом городе появляется на белом прекрасном коне молодой принц. Узнав, какое несчастье произошло с принцессой, молодой принц берется расколдовать ее. Для этого он измеряет длину от основания башни до окна, за которым скрывается принцесса. У него получается 30 шагов. Затем что-то прикидывает в уме и отходит на 40 шагов, поднимает голову и вдруг... башня озаряется светом и через мгновенье навстречу принцу выбегает еще более прекрасная принцесса... Как же принц догадался, что от башни надо отойти на 40 шагов?

ПОЗНАВАТЕЛЬНАЯ ЗАДАЧА.

Слайд 6

Для решения этой задачи необходимо знать соотношение между сторонами прямоугольного треугольника. Проблема: - найти соотношение между сторонами прямоугольного треугольника.

В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ КВАДРАТ ГИПОТЕНУЗЫ РАВЕН СУММЕ КВАДРАТОВ КАТЕТОВ.

ТЕОРЕМА ПИФАГОРА.

Слайд 7

с b а АВ² = АС² + СВ²; с² = а² + b²;

Слайд 8

ЕГО ИМЕНЕМ НАЗВАНА ТЕОРЕМА.

ПИФАГОР САМОССКИЙ

Слайд 9

Немецкий писатель - романист А.Шамиссо написал следующие стихи:

Пребудет вечной истина, как скоро Ее познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век. Обильно было жертвоприношенье Богам от Пифагора. Сто быков Он отдал на закланье и сожженье За света луч, пришедший с облаков. Поэтому всегда с тех самых пор, Чуть истина рождается на свет, Быки ревут, ее почуя, вслед. Они не в силах свету помешать, А могут лишь, закрыв глаза, дрожать От страха, что вселил в них Пифагор.

Слайд 10

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах этого треугольника.

Слайд 11

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА.

Вероятно теорема Пифагора сначала была доказана для равнобедренного прямоугольного треугольника. Для треугольника АВС квадрат, построенный на гипотенузе АС, содержит 4 треугольника, а квадраты, построенные на катетах, - по 2 треугольника. Значит, площадь квадрата, построенного на гипотенузе прямоугольного равнобедренного треугольника, равна сумме площадей квадратов, построенных на катетах этого треугольника.

Слайд 12

"ПИФАГОРОВЫ ШТАНЫ"

Слайд 13

Выполним дополнительные построения.

Слайд 16

Слайд 17

(a + b) = c + 4 * 1/2ab. ² a + 2ab + b = c + 2ab. c = a + b

Слайд 18

Доказательство методом разложения квадратов на равные части, называемое «колесо с лопастями». Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе. Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

Теорема Пифагора. История возникновения и различные способы доказательства.


  • Пифагор Самосский (др.-греч. Πυθαγόρας ὁ Σάμιος ; 570 - 490 гг. до н. э.) - древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.

  • Родители – Мнесарх и Партенида с Самоса
  • В 18-летнем возрасте отправился в путешествие в Египет, Вавилон
  • Вернулся на родину в 56 лет
  • В греческой колонии Кротоне в Южной Италии основал свою школу
  • Был женат на своей ученице Феано, имел сына и дочь.

Пифогорейская школа.

Условия приёма в школу Пифагора:

  • отказаться от личной собственности в пользу союза
  • не проливать крови
  • не употреблять мясной пищи
  • беречь тайну учения своего учителя
  • не обучать других за вознаграждение

  • Умел разговаривать с птицами и животными
  • Повелевал духами и делал предсказания
  • Способен раздваиваться
  • Исцелял людей
  • Перевоплощённый бог Аполлон
  • Имел золотое бедро

  • Великая наука жить счастливо состоит в том, чтобы жить только в настоящем.
  • Дружба есть равенство.
  • Жизнь подобна игрищам: иные приходят на них состязаться, иные торговать, а самые счастливые - смотреть.
  • Из двух человек одинаковой силы сильнее тот, кто прав.

Музыка и Пифагор

  • Пифагор и его последователи рассчитали т.н. пифагоров строй - математическое выражение интервалов между звуками гаммы (т.н. «лидийской» гаммы).

  • Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

  • В древнекитайской книге Чжоу би суань цзин говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

  • Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н. э. , во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

  • Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, то есть к 2000 году до н. э. , приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях.
  • Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал вывод о большой вероятности того, что теорема о квадрате гипотенузы была известна в Вавилоне уже около XVIII века до н. э.

  • Согласно комментарию Прокла к Евклиду, Пифагор использовал алгебраические методы, чтобы находитьпифагоровы тройки. Однако Прокл писал, что не существует явного упоминания, относящегося к периоду продолжительностью 5 веков после смерти Пифагора, что Пифагор был автором теоремы.
  • Однако, когда авторы, такие как Плутарх иЦицерон, пишут о теореме Пифагора, они пишут так, как будто авторство Пифагора было широко известным и несомненным.«Принадлежит ли эта формула лично перу Пифагора…, но мы можем уверенно считать, что она принадлежит древнейшему периоду пифагорейской математики».

  • По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков.Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Формулировка теоремы

Во времена Пифагора теорема звучала так:

  • « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»
  • « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».

Формулировка теоремы

  • «

Формулировка теоремы

  • В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так: "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".
  • В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".

Формулировка теоремы

  • « У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".»
  • Латинский перевод арабского текста Аннаирици (около 900 г. до н. э.) в переводе на русский гласит:"Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».


Доказательства теоремы

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).


Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c .


В одном случае (слева) квадрат разбит на квадрат со стороной b a и c .

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c .

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c .


Дано:

ABC -прямоугольный треугольник

Доказать:

S ABDE =S ACFG +S BCHI


Доказательство:

Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .


Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно

S PQEA = 2S ACE

Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.


Дано: ABC -прямоугольный треугольник

Доказать: AB 2 =AC 2 +BC 2

Доказательство:

1) Проведем высоту CD из вершины прямого угла С . 2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует

AB*AD=AC 2 .

3) Аналогично соsВ=BD/BC=BC/AB , значит

AB*BD=BC 2 .

4) Сложив полученные равенства почленно, получим:

AC 2 +BC 2 = АВ *(AD + DB)

AB 2 =AC 2 +BC 2 . Что и требовалось доказать.


Дано: ABC -прямоугольный треугольник

Доказать: BC 2 =AB 2 +AC 2

Доказательство:

1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E . 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

S ABED =2*AB*AC/2+BC 2 /2

3) Фигура ABED является трапецией, значит, её площадь равна:

S ABED = (DE+AB)*AD/2.

4) Если приравнять левые части найденных выражений, то получим:

AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2

AB*AC+BC 2 /2= (AC+AB) 2 /2

AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC

BC 2 =AB 2 +AC 2 .


  • Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения

получаем

что эквивалентно


сложив получаем


Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.





Рекомендуем почитать

Наверх