Радуга возникает в результате преломления и. Оптические явления: примеры. Свет, мираж, северное сияние, радуга. Мы не можем видеть все цвета радуги

Для девочек 31.01.2024

Представляем Вам подборку из 20ти наиболее красивых природных феноменов, связанных с игрой света. Поистине явления природы неописуемы - это надо видеть! =)

Разделим условно все световые метаморфозы на три подгруппы. Первая - Вода и Лёд, вторая - Лучи и Тени, и третья - Световые контрасты.

Вода и Лёд

“Окологоризонтальная Дуга”

Этот феномен также известен как “огненная радуга”. Создаётся в небе, когда свет преломляется через ледяные кристаллы в перистых облаках. Явление это очень редкое, поскольку и ледяные кристаллы и солнце должны встать точно по горизонтальной линии, чтобы произошло такое эффектное преломление. Этот особенно удачный пример был запечатлён в небе над Spokane в Вашингтоне, в 2006 году


Ещё пара примеров огненной радуги




Когда солнце светит на альпиниста или другой объект сверху - тень проектируется на туман, создавая любопытно увеличенную треугольную форму. Этот эффект сопровождается своеобразным ореолом вокруг объекта - цветными световыми кругами, которые появляются непосредственно напротив солнца, когда солнечный свет отражается облаком одинаковых капелек воды. Название этот природный феномен получил из-за того, что чаще всего наблюдался именно на достаточно доступных для альпинистов невысоких немецких пиках Брокена, вследствие частых туманов в этом районе





В двух словах - это радуга вверх ногами=) Такой себе огромный разноцветный смайл на небе) Получается такое чудо за счёт преломления солнечных лучей через горизонтальные кристаллы льда в облаках определённой формы. Явление сосредоточено в зените, параллельно горизонту, диапазон цвета - от синего в районе зенита и до красного к горизонту. Феномен этот всегда в форме неполной круглой дуги; полный круг в подобной ситуации - исключительно редкая Дуга Пехотинца, которая впервые была запечатлена на плёнке в 2007 году



Туманная Дуга

Этот странный ореол был замечен с моста Золотых Ворот в Сан-Франциско - выглядел он как полностью белая радуга. Как и радуга этот феномен создаётся благодаря преломлению света через капельки воды в облаках, но, в отличие от радуги - из-за небольшого размера капелек тумана цвета как бы не хватает. Поэтому радуга получается бесцветной - просто белой) Моряки часто именуют их как “морские волки” или “туманные дуги”




Радужный ореол

Когда свет как бы рассеивается обратно (смесь отражения, преломления и дифракции) - назад к его источнику, капелькам воды в облаках, тень объекта между облаком и источником может быть разделена на цветные полосы. Glory переводится ещё как неземная красота - достаточно точное название такому прекрасному природному феномену) В некоторых частях Китая этот феномен даже называют Светом Будды - он часто сопровождается Призраком Брокена. На фото красивые цветные полосы эффектно окружают тень самолета напротив облака



Ореолы - одни из самых известных и частых оптических явлений, возникают они под множеством обликов. Наиболее часто встречается именно феномен солнечного ореола, вызванный преломлением света кристаллами льда в перистых облаках на большой высоте, а специфическая форма и ориентация кристаллов могут создать изменение в появлении ореола. Во время очень холодной погоды ореолы, сформированные кристаллами рядом с землей отражают солнечный свет между ними, посылая его в нескольких направлениях сразу - этот эффект известен как “алмазная пыль”




Когда солнце оказывается точно под правильным углом позади облаков - капельки воды в них преломляют свет, создавая интенсивный тянущийся шлейф. Окраска, как и в радуге, вызванная различными длинами световых волн - различные длины волны преломляются в разной степени, изменяя угол преломления и, следовательно, цвета света в нашем восприятии. На этом фото радужность облака сопровождается резко окрашенной радугой


Ещё несколько фотографий этого явления




Сочетание низкой Луны и темного неба часто создает лунные дуги, по существу радуги, произведенные светом луны. Появляясь в противоположном Луне конце неба, они обычно выглядят как полностью белые из-за слабой окраски, однако фотография с длинной выдержкой может захватить истинные цвета, как на этом фото, сделанном в Йосемитском национальном парке, Калифорния.


Ещё несколько фото лунной радуги



Этот феномен возникает как белое кольцо, окружающее небо, всегда на той же высоте над горизонтом, что и Солнце. Обычно удаётся уловить лишь фрагменты целой картины. Миллионы вертикально расположенных ледяных кристаллов отражают солнечные лучи по всему небу, чтобы получилось это красивое явление.


По бокам получающейся сферы часто появляются так называется ложные Солнца, как например на этом фото


Радуги могут принимать множество форм: многожественные дуги, пересекающиеся дуги, красные дуги, одинаковые дуги, дуги с окрашенными краями, темные полосы, “спицы” и многие другие, но объединяет их то, что все они делятся на цвета - красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Помните из детства "запоминалку" расположения цветов в радуге - Каждый Охотник Желает Знать, Где Сидит Фазан?=) Радуги появляются, когда свет преломляется через капли воды в атмосфере, чаще всего во время дождя, но дымка или туман также могут создать подобные эффекты, и намного более редки, чем можно было бы вообразить. Во все времена множество различных культур приписывали радугам множество значений и объяснений, например древние греки верили, что радуги были дорогой к небесам, а ирландцы считали, что в том месте, где заканчивается радуга - лепрекон закопал свой горшок с золотом=)





Больше информации и красивых фото по радуге можно найти

Лучи и Тени

Корона - это тип плазменной атмосферы, которая окружает астрономическое тело. Cамый известный пример такого явления - корона вокруг Солнца во время полного затмения. Оно простирается в космосе на тысячи километров и содержит ионизированное железо, разогретое почти до миллиона градусов Цельсия. Во время затмения его яркий свет окружает затемненное солнце и кажется будто вокруг светила появляется корона из света




Когда затемнённые области или водопроницаемые препятствия, такие как ветви дерева или облака, фильтруют луч солнца - из лучей получаются целые колонны света, исходящие из единственного источника в небе. Явление это, часто используемое в фильмах ужасов, обычно наблюдается на рассвете или закате и может даже быть засвидетельствовано под океаном, если солнечные лучи проходят через полосы сломанного льда. Эта красивая фотография была сделана в Национальном парке Юты


Ещё несколько примеров





Fata Morgana

Взаимодействие между холодным воздухом около уровня земли и теплым воздухом сразу над ним может действовать как преломляющая линза и перевернуть вверх тормашками изображение объектов на горизонте, по которому фактическое изображение, кажется, колеблется. На этом снимке, деланном в Тюрингии, Германия, горизонт на расстоянии, кажется, вообще исчез, хотя синяя часть дороги - просто отражение неба выше горизонта. Утверждение о том, что миражи - полностью несуществующие изображения, которые являются только людям, затерявшимся в пустыне, является некорректным, вероятно перепутанным с эффектами крайнего обезвоживания, которое может вызвать галлюцинации. Миражи всегда основаны на реальных объектах, хотя верно то, что они могут казаться ближе из-за эффекта миража



Отражение света ледяными кристаллами с почти идеально горизонтальными плоскими поверхностями создает сильный луч. Источником света может быть Солнце, Луна или вообще искусственный свет. Интересная особенность заключается в том, что у столба будет цвет этого источника. На этом фото, сделанном в Финляндии, оранжевый солнечный свет на закате создает такой же оранжевый великолепный столб

Ещё парочка “солнечных столбов”)




Световые контрасты

Столкновение заряженных частиц в верхней атмосфере часто создает великолепные световые картины в полярных областях. Цвет зависит от элементного содержания частиц – большинство полярных сияний кажется зеленым или красным из-за кислорода, однако азот иногда создает глубокую синюю или фиолетовую видимость. На фото - известная Аврора Борилис или Северное сияние, названное так в честь римской богини рассвета Авроры и древнегреческого бога северного ветра Борея





А так Северное сияние выглядит из космоса



Конденсационный (инверсионный) след

Следы пара, которые следуют за самолетом через всё небо - это одни из самых ошеломляющих примеров вмешательства человека в атмосферу. Они созданы или выхлопом самолета или воздушными вихрями от крыльев и появляются только в холодных температурах на большой высоте, конденсируясь в ледяные капельки и воду. На этом фото куча инверсионных следов перекрещивает небо, создавая причудливый образец этого неприродного феномена




Высотные ветра искривляют следы ракет, и их маленькие выхлопные частицы преврящают солнечный свет в яркие переливающиеся цвета, которые иногда те же самые ветра переносят на тысячи километров, пока те окончательно не рассеются. На фото - следы ракеты Минотавр, запущенной с базы ВВС США в Ванденберге, Калифорния


Небо, как и многие другие вещи вокруг нас, рассеивает поляризованный свет, имеющий определенную электромагнитную ориентацию. Поляризация всегда перпендикулярна непосредственно световому пути и если в свете присутствует лишь одно направление поляризации - говорят, что свет линейно поляризован. Эта фотография была сделана с поляризованной линзой фильтра широкого угла, чтобы показать, насколько захватывающе выглядит электромагнитный заряд в небе. Обратите внимание, какой оттенок небо имеет около горизонта, и какой - в самом верху


Технически невидимое невооруженным глазом, это явление можно запечатлеть, оставив камеру как минимум на час, а то и на всю ночь с открытым объективом. Естественное вращение Земли заставляет звезды в небе двигаться через горизонт, создавая за собой замечательные следы. Единственная звезда в вечернем небе, которая всегда находится на одном месте - конечно же Полярная, так как она находится фактически на одной оси с Землёй и её колебания заметны только на Северном полюсе. То же самое было бы верно на юге, но нет никакой звезды, достаточно яркой для того, чтобы наблюдать аналогичный эффект





А вот и фото с полюса)


Слабый треугольный свет, замеченный в вечернем небе и простирающийся к небесам, Зодиакальный свет легко скрывается легким загрязнением атмосферы или лунным светом. Феномен этот вызывается отражением солнечного света от частиц пыли в космосе, известных как космическая пыль, следовательно его спектр абсолютно идентичен спектру Солнечной системы. Солнечное излучение заставляет частицы пыли медленно расти, создавая величественное созвездие изящно разбросанных по небу огоньков




Экология

Во многих культурах существуют легенды и мифы о силе радуги, люди посвящают ей произведения искусства, музыки и поэзии.

Психологи утверждают, что люди восхищаются этим природным явлением, потому что радуга является обещанием светлого, "радужного" будущего.

С технической точки зрения радуга возникает, когда свет проходит через капельки воды в атмосфере , и преломление света приводит к привычному всем нам виду изогнутой арки разных цветов.

Вот эти и другие интересные факты о радуге:


7 фактов о радуге (с фото)

1. Радугу редко можно увидеть в полдень

Чаще всего радуга возникает утром и вечером. Чтобы радуга смогла сформироваться, солнечный свет должен попасть в дождевую каплю под углом примерно 42 градуса. Это вряд ли произойдет, когда Солнце находится выше, чем под углом 42 градуса в небе.

2. Радуга появляется и ночью

Радугу можно увидеть и после наступления темноты. Такое явление называют лунной радугой. В этом случае лучи света преломляются при отражении от Луны, а не напрямую от Солнца.

Как правило, она бывает менее яркой, так как чем ярче свет, тем разноцветнее радуга.

3. Два человека не могут видеть одну и ту же радугу

Свет, отраженный от определенных дождевых капель, отражается от других капель с совершенно разного угла для каждого из нас. Это создает и разный образ радуги.

Так как два человека не могут находиться в одном и том же месте, они не могут видеть одну и ту же радугу. Более того, даже каждый наш глаз видит разную радугу.

4. Мы никогда не сможем достичь конца радуги

Когда мы смотрим на радугу, кажется, будто она передвигается вместе с нами. Это происходит потому, что свет, который ее формирует, проделывает это с определенного расстояния и угла для наблюдателя. И это расстояние всегда останется между нами и радугой.

5. Мы не можем видеть все цвета радуги

Многие из нас с детства помнят стишок, который позволяет запомнить 7 классических цветов радуги (Каждый охотник желает знать, где сидит фазан).

Каждый - красный

Охотник - оранжевый

Желает - желтый

Знать - зеленый

Где - голубой

Сидит - синий

Фазан – фиолетовый

Однако на самом деле радуга состоит из более чем миллиона цветов, включая цвета, которые человеческий глаз не может увидеть.

6. Радуга бывает двойной, тройной и даже четверной

Мы можем увидеть больше одной радуги, если свет отражается внутри капли и разделяется на составляющие цвета. Двойная радуга появляется, когда это происходит внутри капли дважды, тройная - когда трижды и так далее.

При четверной радуге, каждый раз, когда отражается луч, свет, а соответственно и радуга становится бледнее и потому последние две радуги видны очень слабо.

Чтобы увидеть такую радугу, нужно чтобы совпало сразу несколько факторов, а именно абсолютно черное облако, и либо равномерное распределение размеров дождевых капель, либо проливной дождь.

7. Вы можете сами заставить радугу исчезнуть

Используя поляризационные солнечные очки можно перестать видеть радугу. Это происходит потому, что они покрыты очень тонким слоем молекул, которые расположены в вертикальные ряды, а свет, отраженный от воды, поляризуется горизонтально. Это явление можно увидеть на видео.


Как сделать радугу?

Вы можете также сделать настоящую радугу в домашних условиях. Существует несколько методов.

1. Метод с использованием стакана воды

Наполните стакан водой и поместите его на стол перед окном в солнечный день.

Поместите листок белой бумаги на пол.

Намочите окно горячей водой.

Регулируйте стакан и бумагу, пока не увидите радугу.

2. Метод с использованием зеркала

Поместите зеркало внутри стакана наполненного водой.

Комната должна быть темной, а стены белые.

Посветите фонариком в воду, двигая его, пока не увидите радугу.

3. Метод с использованием компакт диска

Возьмите компакт- диск, и протрите его, чтобы он не был пыльным.

Положите его на плоскую поверхность, под свет или перед окном.

Смотрите на диск и наслаждайтесь радугой. Можете покрутить диск, чтобы увидеть, как передвигаются цвета.

4. Метод дымки

Используйте шланг для воды в солнечный день.

Закройте пальцем отверстие шланга, создавая дымку

Направьте шланг в сторону Солнца.

Посмотрите на дымку, пока не увидите радугу.

В религиозных представлениях народов древности радуге приписывалась роль моста между землей и небом. В греко-римской мифологии известна даже особая богиня радуги - Ирида. Греческие ученые Анаксимен и Анаксагор считали, что радуга возникает за счет отражения Солнца в темном облаке. Аристотель изложил представления о радуге в специальном разделе своей «Метеорологии». Он считал, что радуга возникает благодаря отражению света, но не просто от всего облака, а от его капель.

В 1637 году знаменитый французский философ и ученый Декарт дал математическую теорию радуги, основанную на преломлении света. Впоследствии эта теория была дополнена Ньютоном на основании его опытов по разложению света на цвета с помощью призмы. Дополненная Ньютоном теория Декарта не могла объяснить одновременного существования нескольких радуг, различной их ширины, обязательного отсутствия в цветных полосах некоторых цветов, влияния размеров капель облака на внешний вид явления. Точную теорию радуги на основе представлений о дифракции света дал в 1836 году английский астроном Д. Эри. Рассматривая пелену дождя как пространственную структуру, обеспечивающую возникновение дифракции, Эри объяснил все особенности радуги. Его теория полностью сохранила свое значение и для нашего времени.

Радуга - это оптическое явление, возникающее в атмосфере и имеющее вид разноцветной дуги на небесном своде. Наблюдается она в тех случаях, когда солнечные лучи освещают завесу дождя, расположенную на противоположной Солнцу стороне неба. Центр дуги радуги находится в направлении прямой, проходящей через солнечный диск (хотя бы и скрытый от наблюдения тучами) и глаз наблюдателя, т.е. в точке, противоположной Солнцу. Дуга радуги представляет собой часть круга, описанного вокруг этой точки радиусом в 42°30" (в угловом измерении).

Наблюдатель иногда может одновременно увидеть несколько радуг - главную, побочную и вторичные. Главная радуга представляет собой цветную дугу на каплях удаляющейся дождевой пелены и возникает она всегда со стороны неба, противоположной Солнцу. При Солнце на горизонте высота верхнего края главной радуги составляет в угловой мере 42°30". При подъеме Солнца над горизонтом видимая часть радуги понижается. Когда Солнце достигает высоты 42°30", для наблюдателя на земной поверхности радуга будет не видна, однако если в момент ее исчезновения подняться на башню или мачту корабля, то радугу можно увидеть снова.

При наблюдении с высокой горы или с самолета радуга может иметь вид полной окружности. Еще Аристотель математически доказал, что Солнце, местонахождение наблюдателя и центр радуги находятся на одной прямой. Поэтому чем выше над горизонтом поднимается Солнце, тем ниже опускается центр радуги. В пересеченной местности радугу можно наблюдать и на фоне ландшафта.

Интересно расположение цветов в радуге. Оно всегда постоянно. Красный цвет главной радуги расположен на ее верхнем крае, фиолетовый - на нижнем. Между этими крайними цветами следуют друг за другом остальные цвета в такой же последовательности, как в солнечном спектре. В принципе в радуге никогда не бывают представлены все цвета спектра. Чаще всего в ней отсутствуют или слабо выражены синий, темно-синий и насыщенный чисто красный цвета. С увеличением размеров капель дождя происходит сужение цветных полос радуги, сами же цвета становятся более насыщенными. Преобладание в явлении зеленых тонов обычно указывает на последующий переход к хорошей погоде. Общая картина цветов радуги имеет размытый характер, так как образуется она протяженным источником света.

Над главной радугой располагается побочная с чередованием цветов, обратным главной. Угловая высота верхнего края побочной радуги составляет 53°32". Кроме того, со стороны фиолетового конца главной радуги иногда можно наблюдать радуги вторичные, преимущественной их окраской является зеленая и розовая. В редких случаях вторичные радуги отмечаются и со стороны фиолетового края побочной радуги. Вторичные радуги более широки в высоких слоях дождевой пелены, где капли дождя имеют меньшие размеры.

При искусственном воспроизведении явления в лаборатории удавалось получать до 19 радуг. Над водоемом могут наблюдаться дополнительные радуги, расположенные друг относительно друга неконцентрично. Для одной из них источником света является Солнце, для другой - его отражение от водной поверхности. В этих условиях могут встречаться и радуги, расположенные «вверх ногами».

Ночью при лунном освещении и туманной погоде в горах и на берегах морей можно наблюдать белую радугу. Такой тип радуги может возникать и при воздействии солнечного света на туман. Она имеет вид блестящей белой дуги, с внешней стороны окрашенной в желтоватый и оранжево-красный цвета, а изнутри - в сине-фиолетовый.

Если радуга образована действием лунного света на капли дождя, то она выглядит белой. В некоторых случаях она кажется белой только вследствие малой интенсивности света. Такого типа радуга при укрупнении капель дождя может перейти в цветную. Наоборот, цветная радуга может потерять окраску, если дождь превратится в мелкокапельный туман. Как правило, при наличии мелких капель окраска радуги выражена слабо.

Радуга наблюдается не только на пелене дождя. В меньших масштабах ее можно увидеть на каплях воды у водопадов, фонтанов и в морском прибое. При этом в качестве источника света могут служить не только Солнце и Луна, но и прожектор.

Строение радуги.

Радуга может рассматриваться как гигантское колесо, которое как на ось надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя.

На рисунке эта прямая обозначена как прямая OO 1 ; O -- наблюдатель, ОСD -- плоскость земной поверхности, ?AOO 1 = j -- угловая высота Солнца над горизонтом. Чтобы найти tg(j), достаточно разделить рост наблюдателя на длину отбрасываемой им тени. Точка O 1 называется противосолнечной точкой, она находится ниже линии горизонта СD. Из рисунка видно, что радуга представляет собой окружность основания конуса, ось которого есть ОO 1 ; j - угол, составляемый осью конуса с любой из его образующих (угол раствора конуса). Разумеется, наблюдатель видит не всю указанную окружность, а только ту часть ее (на рисунке участок СВD), которая находится над линией горизонта. Заметим, что?АОВ = Ф есть угол, под которым наблюдатель видит вершину радуги, а?АОD = a -- угол, под которым наблюдатель видит каждое из оснований радуги. Очевидно, что

Ф + j = g (2.1).

Таким образом, положение радуги по отношению к окружающему ландшафту зависит от положения наблюдателя по отношению к Солнцу, а угловые размеры радуги определяются высотой Солнца над горизонтом. Наблюдатель есть вершина конуса, ось которого направлена по линии, соединяющей наблюдателя с Солнцем. Радуга есть находящаяся над линией горизонта часть окружности основания этого конуса. При передвижениях наблюдателя указанный конус, а значит, и радуга, соответствующим образом перемещаются.

Здесь необходимо сделать два пояснения. Во-первых, когда мы говорим о прямой линии, соединяющей наблюдателя с Солнцем, то имеем в виду не истинное, а наблюдаемое направление на Солнце. Оно отличается от истинного на угол рефракции.

Во-вторых, когда мы говорим о радуге над линией горизонта, то имеем в виду относительно далекую радугу -- когда завеса дождя удалена от нас на несколько километров.

Можно наблюдать также и близкую радугу, на пример, радугу, возникающую на фоне большого фонтана. В этом случае концы радуги как бы уходят в землю. Степень удаленности радуги от наблюдателя не влияет, очевидно, на ее угловые размеры. Из (2.1) следует, что Ф = g - j.

Для основной радуги угол у равен примерно 42° (для желтого участка радуги) а для вторичной этот угол составляет 52°. Отсюда ясно, почему земной наблюдатель не может любоваться основной радугой, если высота Солнца над горизонтом превышает 42°, и не увидит вторичную радугу при высоте Солнца, превышающей 52°.

Образование радуги.

Основная радуга образуется за счёт отражения света в каплях воды. А побочная радуга образуется в результате двукратного отражения света внутри каждой капли. В этом случае лучи света выходят из капли под другими углами, чем те, которые дают основную радугу, и цвета в побочной радуге располагаются в обратной последовательности.

Ход лучей в капле воды: а - при одном отражении, б - при двух отражениях

Можно рассмотреть простейший случай: пусть на капли, имеющих форму шара, падает пучок параллельных солнечных лучей. Луч, падающий на поверхность капли, преломляется внутри нее по закону преломления:

n1 sin б=n2 sin в

где n 1 =1, n 2 =1,33 - соответственно показатели преломления воздуха и воды, б - угол падения, а в - угол преломления света.

Внутри капли идет по прямой. Затем происходит частичное преломление луча и частичное его отражение. Надо заметить, что, чем меньше угол падения, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча. Луч после отражения попадает в другую точку, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под некоторым углом, а отраженный может пройти дальше и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, первым вышедший из капли. Но наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей.

При рассмотрении образования радуги нужно учесть еще одно явление - неодинаковое преломление волн света различной длины, то есть световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления и угла отклонения лучей в капле различны для лучей различной окраски. Чем больше внутренних отражений испытают лучи в капле, тем слабее радуга. Наблюдать радугу можно, если Солнце находится позади наблюдателя. Поэтому самая яркая, первичная радуга формируется из лучей, испытавших одно внутреннее отражение. Они пересекают падающие лучи под углом около 42°. Геометрическим местом точек, расположенных под углом 42° к падающему лучу, является конус, воспринимаемый глазом в его вершине как окружность. При освещении белым светом будет получаться цветная полоса, причем красная дуга всегда выше фиолетовой.

Когда бы радуга ни возникала, она всегда образуется игрой света на каплях воды. Обычно это дождевые капли, изредка - мелкие капли тумана. На самых мелких каплях, таких, из которых состоят облака, радуга не видна.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды , взвешенных в воздухе. Эти капельки по-разному отклоняют свет разных цветов, в результате чего белый свет разлагается в спектр.

В яркую лунную ночь можно увидеть радугу от Луны . Поскольку человеческое зрение устроено так, что при слабом освещении глаз плохо воспринимает цвета, лунная радуга выглядит белесой; чем ярче свет, тем «цветнее» радуга.

По старому английскому поверью, у подножия каждой радуги можно найти горшок с золотом. Еще и теперь встречаются люди, воображающие, что они действительно могут добраться к подножью радуги и что там виден особый мерцающий свет.

Совершенно очевидно, что радуга не находится в каком-либо определенном месте , подобно реальной вещи; она - не что иное, как свет, приходящий по определенному направлению.

Чаще всего наблюдается первичная радуга , при которой свет претерпевает одно внутреннее отражение. Ход лучей показан на рисунке ниже. В первичной радуге красный цвет находится снаружи дуги, её угловой радиус составляет 40-42°.

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга , в которой свет отражается в капле два раза. Во вторичной радуге «перевёрнутый» порядок цветов - снаружи находится фиолетовый, а внутри красный. Угловой радиус вторичной радуги 50-53°.

Порядок цветов во второй радуге обратен порядку в первой; они обращены друг к другу красными полосами.

Схема образования радуги

  1. сферическая капля,
  2. внутреннее отражение,
  3. первичая радуга,
  4. преломление,
  5. вторичная радуга,
  6. входящий луч света,
  7. ход лучей при формировании первичной радуги,
  8. ход лучей при формировании вторичной радуги,
  9. наблюдатель,
  10. область формирования радуги,
  11. область формирования радуги.
  12. область формирования радуги.

Центр окружности, которую описывает радуга, всегда лежит на прямой, проходящей через Солнце (Луну) и глаз наблюдателя, то есть одновременно видеть солнце и радугу без использования зеркал невозможно.

Собственно говоря, радуга представляет собой полную окружность. Мы не можем проследить ее за горизонтом только потому, что мы не видим дождевых капель, падающих под нами.

С самолета или возвышенности можно видеть полную окружность.

«Семь цветов радуги» существуют лишь в воображении. Это - риторический оборот, живущий так долго потому, что мы редко видим вещи такими, каковы они в действительности. На самом деле цвета радуги постепенно переходят один в другой, и лишь глаз непроизвольно объединяет их в группы.

Традиция выделять в радуге 7 цветов пошла от Исаака Ньютона , для которого число 7 имело специальное символическое значение (по то ли пифагорейским, то ли богословским соображениям). Традиция выделять в радуге 7 цветов не всемирна, например, у болгар в радуге 6 цветов.

Для запоминания последовательности цветов в радуге есть мнемонические фразы, первые буквы каждого слова в которых соответствуют первым буквам в названиях цветов (Красный, Оранжевый, Желтый, Зеленый, Голубой, Синий, Фиолетовый

"К аждый о хотник ж елает з нать, г де с идит ф азан" . "Как однажды жак-звонарь головой сломал фонарь" .


МОУ “СОШ № 8”

Практическая работа по физике

Явление преломление лежит в основе работы телескопов-рефракторов (научного и практического назначения, в том числе подавляющей доли зрительных труб, биноклей и других приборов наблюдения), объективов фото-, кино- и телекамер, микроскопов, увеличительных стекол, очков, проекционных приборов, приемников и передатчиков оптических сигналов, концентраторов мощных световых пучков, призменных спектроскопов и спектрометров, призменных монохроматоров, и многих других оптических приборов, содержащих линзы и/или призмы. Её учет необходим при расчете работы почти всех оптических приборов. Всё это относится к разным диапазонам электромагнитного спектра.

В акустике преломление звука особенно важно учитывать при исследовании распространения звука в неоднородной среде и, конечно, на границе разных сред. Может быть важным в технике и учет преломления волн другой природы, например, волн на воде, различных волн в активных средах и т .д.
Преломление в обычной жизни

Преломления встречается на каждом шагу и воспринимается как совершенно обыденное явление: можно видеть как ложка, которая находится в чашке с чаем, будет «переломлена» на границе воды и воздуха. Тут уместно отметить, что данное наблюдение при некритическом восприятии дает неверное представление о знаке эффекта: кажущееся переломление ложки происходит в обратную сторону реальному преломлению лучей света.

Преломление и отражение света в каплях воды порождает радугу.

Многократным преломлением (отчасти и отражением) в мелких прозрачных элементах структуры (снежинках, волокнах бумаги, пузырьках) объясняются свойства матовых (не зеркальных) отражающих поверхностей, таких как белый снег, бумага, белая пена.

Рефракцией в атмосфере объясняются многие интересные эффекты. Например, при определенных метеорологических условиях Земля (с небольшой высоты) может выглядеть как вогнутая чаша (а не часть выпуклого шара).

Мираж.

Мираж (фр. mirage) - оптическое явление в атмосфере : отражение света границей между резко разными по плотности слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещённое относительно предмета.
Классификация

Миражи делят на нижние, видимые под объектом, верхние, - над объектом, и боковые.


Нижний мираж

Наблюдается при очень большом вертикальном градиенте температуры (падении её с высотой) над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой

Верхний мираж

Наблюдается над холодной земной поверхностью при инверсионном распределении температуры (росте её с высотой)

Боковой мираж

Иногда наблюдается у сильно нагретых стен или скал.

Фата-моргана

Сложные явления миража с резким искажением вида предметов носят название Фата-моргана.

Галлюцинационный

Некоторые миражи могут быть вызванными галлюцинациями, появляющимися в результате перегрева и обезвоживания.


Полярное сияние.

Полярное сияние - свечение (люминесценции) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.
Природа полярных сияний

Полярные сияния возникают в следствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса (авроральные овалы). Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя , занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.

В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низкоэнергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосфер планет: так, например, если для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне , то для Юпитера - линии излучения водорода в ультрафиолете.

Поскольку ионизация заряженными частицами происходит наиболее эффективно в конце пути частицы и плотность атмосферы падает с высотой в соответствии с барометрической формулой, то высота появлений полярных сияний достаточно сильно зависит от параметров атмосферы планеты, так, для Земли с её достаточно сложным составом атмосферы красное свечение кислорода наблюдается на высотах 200-400 км, а совместное свечение азота и кислорода - на высоте ~110 км. Кроме того, эти факторы обуславливают и форму полярных сияний - размытая верхняя и достаточно резкая нижняя границы. (см. Рис. 3).
Полярные сияния Земли

Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли - авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10-16°, на ночной - 20-23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67-70°, однако во времена солнечной активности авроральный овал расширяется и полярные сияния могут наблюдаться в более низких широтах - на 20-25° южнее или севернее границ их обычного проявления.


Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии (во время одного из зарегистрированных в 2007 году возмущений - 5x1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.

При наблюдении с поверхности Земли Полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.


Полярные сияния других планет Солнечной системы

Магнитные поля планет-гигантов Солнечной системы значительно сильнее магнитного поля Земли, что обуславливает больший масштаб полярных сияний этих планет по сравнению с полярными сияниями Земли. Особенностью наблюдений с Земли (и вообще из внутренних областей Солнечной системы) планет-гигантов является то, что они обращены наблюдателю освещённой Солнцем стороной и в видимом диапазоне их полярные сияния теряются в отражённом солнечном свете. Однако благодаря высокому содержанию водорода в их атмосферах, излучению ионизированного водорода в ультрафиолетовом диапазоне и малому альбедо планет-гигантов в ультрафиолете, с помощью внеатмосферных телескопов (космический телескоп «Хаббл») получены достаточно чёткие изображения полярных сияний этих планет.

Особенностью Юпитера является влияние его спутников на полярные сияния: в областях «проекций» пучков силовых линий магнитного поля на авроральный овал Юпитера наблюдаются яркие области полярного сияния, возбуждённые токами, вызванными движением спутников в его магнитосфере и выбросом ионизированного материала спутниками - последнее особенно сказывается в случае Ио с её вулканизмом.

На изображении полярного сияния Юпитера, сделанного космическим телескопом «Хаббл» (Рис. 4) заметны такие проекции: Ио (пятно с «хвостом» вдоль левого лимба), Ганимеда (в центре) и Европы (чуть ниже и справа от следа Ганимеда).



Рекомендуем почитать

Наверх