Open Library - открытая библиотека учебной информации. Круговорот углерода. Принципы и значение Круговорот углерода схема и описание

Для девочек 07.02.2024

Этот элемент присутствует в любой живой молекуле. Под воздействием внешних факторов он переходит из одной формы в другую. Круговорот углерода в природе обеспечивает возможность существования организмов на Земле. Без этих циклов превращений планета станет безжизненной .

Вконтакте

Где присутствует углерод

По распространенности химических элементов элемент занимает 15 место. По важности — это один из основных участников геохимических реакций. Значение вещества в природе сложно недооценить. Оно переходит из неорганического состояния в органическое, строит живые .

Встретить его можно в:

  • (углекислый газ 0,04 % от общей массы воздуха);
  • гидросфере (в виде растворенного в водах мирового океана СО2, в составе питающихся им бактерий верхнего слоя);
  • литосфере (полезные ископаемые: нефть, газ, уголь, известняк, мел);
  • биосфере (в составе любых живых организмов планеты).

Все оболочки Земли тесно связаны. Освобождение элемента, переход из одного вида в другой происходит внутри каждой.

Молекулы проникают в соседнюю сферу. Описывая кратко круговорот углерода в природе, схема выглядит так:

это бесконечная незамкнутая цепь перехода вещества из органического состояния в неорганическое и обратно.

С одной стороны фотосинтезирующие растения и вода, с другой стороны — гетеротрофы, то есть потребляющие организмы (животные).

Что происходит в атмосфере

Углерод в атмосфере имеется всегда. Он присутствует в виде углекислого газа (0,04 %), метана (0,0002 %), окиси углерода (следы). Количество постоянно меняется. Это связано с деятельностью человека, сезонными факторами, температурой окружающей среды.

Откуда поступает вещество

Круговорот углекислого газа в природе– это основной вид перехода и превращений в воздушной оболочке Земли. Постоянными источниками являются:

  • живые существа, выдыхающие углекислоту;
  • продукты разложения органических остатков (бактерии перерабатывают трупы животных, гниющие растения, выделяется СН4);
  • продукты горения природного (уголь, нефть, газ) или синтетического топлива;
  • выбросы вулканических газов во время извержения (первичная углекислота в атмосфере);
  • пожары;
  • хозяйственная деятельность человека (выделение СО2 при производстве цемента: СаСО3->СаО+СО2);
  • повышение температуры мирового океана и высвобождение диоксида элемента.

Важно! Осенью и зимой содержание СО2 в воздухе выше, чем летом и весной. Так человек воздействует на круговорот углерода в природе, схема которого отыщется на порталах, посвященных защите окружающей среды.

А чем поглощается

В природе существует неустойчивое равновесие. Двуокись вещества выводится из атмосферы и замещается другими.

Воды Мирового океана поглощают углекислоту . Особенно активно процесс идет вблизи полюсов. При понижении температуры растворимость газа увеличивается.

Растения на свету поглощают СО2. В результате фотосинтеза выделяется . Молодые быстрорастущие побеги – основная «фабрика» переработки.

Круговорот углерода в природе, схема — это постоянный процесс изменения концентрации газа, поглощения и замещения его кислородом.

Как идет процесс в биосфере

Оболочка соединяет все известные сферы присутствием жизни. В ней постоянно идут обменные процессы. Химические реакции, превращение энергии поддерживают существование живых существ. Круговорот углерода в биосфере самый значительный и масштабный.

Газообмен гидросферы с атмосферой

Гидросфера обменивается углекислотой с воздушной оболочкой Земли. Не весь растворенный газ возвращается обратно. Часть усваивают бактерии верхних слоев. Ими питаются микроорганизмы. Создается пищевая цепочка. Элемент переходит из неорганического состояния в органическое.

Умершие живые существа опускаются на дно. Под давлением воды отложения спрессовываются. Глубинные микроорганизмы и бактерии перерабатывают ил.

Они влияют на круговорот элемента. Образуются полезные ископаемые: газ, нефть, уголь. Углерод перешел из органического состояния в неорганическое. В таком виде он сохраняется миллионы лет.

В верхних слоях содержится больше растворенного кислорода. В нижних – диоксида элемента и азота. Баланс неустойчив. При повышении температуры концентрация газов меняется. При изменении видового состава бактерий и микроорганизмов происходит перемещение кислорода вниз, азота и СО2 — вверх. Газообмен с воздушной оболочкой нарушается.

Движение углерода в литосфере

Диоксид вещества через мелкие поры попадает в почву. Часть его растворяется водой или испаряется. Другая — перерабатывается аэробными бактериями. Плодородный слой обогащается. В благоприятной среде развиваются растения. После отмирания гумус обогащается вновь. Наблюдается бесконечный переход: неорганика – органика – неорганика.

Слои утолщаются, уплотняются. Со временем под действием внешних факторов образуются осадочные полезные ископаемые. В их состав входит данное вещество. Нефть, газ, все виды угля, торф, известняк, мел — надолго консервируют элемент в неорганическом состоянии.

Важно! Элемент в составе в круговороте временно не участвует! Цикл углерода не бывает абсолютно замкнутым.

Фотосинтез: особая часть большого кругооборота

Этот процесс по мощности соизмерим с ядерной реакцией. Более совершенного и экономного механизма производства соединений не существует.

Фотосинтез – часть круговорота элемента в . Он превращает неорганические вещества в органические. Насыщение атмосферы освобожденным кислородом регулирует газовый баланс. В результате этого процесса образуются питательные вещества: сахар, крахмал. Растения потребляют то, что сами производят.

Фотосинтез имеет две фазы: световую и темновую. Под воздействием солнечной энергии во время первой стадии происходит накопление клетками углекислого газа и воды. На этом этапе от молекулы воды отщепляется кислород. Происходит выделение газа в атмосферу.

Темновая стадия происходит без доступа солнечных лучей. Углекислота связывается. Дополнительными продуктами являются органические соединения (углеводы). Углекислый газ в природе одновременно является строительным материалом, а также источником питания, оздоравливающим планету веществом.

Схематическое изображение процесса

Важно! Круговорот карбона в природе – результат постоянных физических и химических превращений в биосфере Земли. Атомы С движутся во всех оболочках планеты. Это полностью отражает развитие жизни.

Основная часть вещества присутствует в составе диоксида. Из атмосферы она поглощается растениями. В процессе фотосинтеза происходит образование органических веществ и освобождение кислорода.

Схема круговорота углерода в природе отражает процесс обмена карбоном между всеми оболочками Земли. Оксид вещества (IV) из атмосферы поглощается верхними слоями гидросферы. Частично он испаряется, участвует в кругообороте воды в природе. Остальное количество перерабатывается организмами, оседает на дно. Образуются осадочные породы. Карбон на время исключается из кругооборота.

Человек разрабатывает месторождения полезных ископаемых, производит и сжигает топливо. Возвращенный в процесс диоксид снова попадает в атмосферу. Количество превышает допустимые нормы. Баланс нарушается. Биосфера не справляется с избыточным содержанием карбона. Включается механизм накопления.

Схема круговорота углерода в природе выделяет части вещества:

  • присутствующие в клетках живых растений;
  • попавшие в организм травоядных животных с пищей (выделяются при дыхании в виде СО2);
  • попавшие в организм плотоядных существ при потреблении травоядных (выделяются при дыхании);
  • отмершие части растений (при переработке организмами образуют осадочные породы).

Процесс химических и физических преобразований карбона последовательный и разомкнутый . Регулируется биосферой. Его скорость зависит от внешних факторов (температуры, влажности, скорости движения воздушных масс, деятельности человека).

Антропогенное влияние на процесс

Хозяйственная деятельность человека приводит к изменению содержания элемента в биосфере. Добыча полезных ископаемых, их переработка возвращает в кругооборот не участвующее количество вещества. Примеры того, как человечество влияет на процесс:

  • сжигание топлива дополнительно увеличивает выбросы диоксида С на 22 млрд. т/год;
  • изменение качественного состава пахотных земель увеличивает объем СО2 в атмосфере;
  • уменьшение площади лесов снижает эффективность фотосинтеза;
  • увеличение температуры вод Мирового океана увеличивает выделение углекислоты, снижает поглощение;
  • загрязнение окружающей среды нарушает газообмен.

Загрязнение вод Мирового океана приводит к гибели микроорганизмов, бактерий. Процесс усваивания вещества нарушен. Газообмен прекращен. СО2 перестает растворяться. Количество в атмосфере возрастает.

Схематично выразить, как человечество негативно воздействует на круговорот углерода, можно так:

Увеличение концентрации СО2 –> ускоренный распад органических остатков –> изменение климата –> создание запасов СО2 –> уменьшение восстановительной способности биосферы –> дополнительные выбросы СО2.

Биосфера не отвечает увеличением собственной продуктивности на повышение концентрации диоксида углерода. Исследования показывают накопление запасов СО2 в атмосфере. Цикл углерода меняет сбалансированное течение. Последствия непредсказуемы.

В природе существуют круговороты веществ. Это цикличные незамкнутые процессы.

Значение углерода в природе велико. Этот элемент присутствует в составе любой живой молекулы, является строительным материалом и источником питания.

Круговорот углерода на планете

Цикл обращения углерода в природе

Вывод

Круговорот углерода в биосфере происходит с разной скоростью и количественным составом участвующих компонентов. Непродуманная хозяйственная деятельность человека приводит к катастрофическим последствиям. К ресурсам требуется относиться бережно.

Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

Углерод является важнейшим биогенным химическим элементом, составляющим основу всех органических и биоорганических соединений. Круговорот углерода в природе тесно связан с круговоротом кислорода и как обязательными составляющими биоорганических веществ. Тесно взаимосвязаны с круговоротом углерода и циклы азота, фосфора и серы, так как эти являются обязательными компонентами белков и .

Биогеохимический цикл углерода определяет энергетику , ведь жизнедеятельность фотосинтезирующих организмов и их взаимодействие с гетеротрофными организмами и неживой природой являются механизмом улавливания, накопления и перераспределения , поступающей на .

Условно круговорот углерода в природе можно начать с углекислого газа, который находится частично в виде газа в (до 0,04% по объему), а частично в растворенном состоянии в водах и других водоемов, при этом реализуется постоянный газообмен между атмосферой и . Углекислый газ образуется в процессе аэробных организмов, что является источником его появления как в атмосфере, так и в гидросфере. Большие количества СO 2 образуются при извержениях , в результате природных и антропогенных пожаров, а также при сжигании топлива, окислении органических веществ отмерших растений и трупов животных.

Свободный и растворенный СO 2 подвергается процессам связывания. Так, большое количество этого газа вступает в процессы , в результате которого образуется органическое вещество растительного происхождения. Этим процессом СO 2 вступает в круговорот и вновь возвращается в исходное состояние, когда органические вещества окисляются либо в процессах дыхания, либо в процессах медленного окисления (гниения), либо в процессах горения (пожары, сжигание в результате антропогенного воздействия).

На этом процессы связывания углекислого газа не завершаются. Водные растворы СO 2 могут взаимодействовать с карбонатными породами как на суше, так и в :

СаСО 3 + СO 2 + Н 2 O = Са(НСO 3) 2

В этом процессе образуются растворимые гидрокарбонаты, которые с водным потоком ( , ) могут перемещаться по планете. Эти процессы (образование гидрокарбонатов) протекают при относительно низких (в холодных водах). При нагревании природных вод гидрокарбонаты разлагаются с образованием нерастворимых карбонатов и углекислого газа, который может либо оставаться в растворенном состоянии, либо удаляться в атмосферу (это еще один источник поступления СO 2 в атмосферу или гидросферу:

Са(НСO 3) 2 = СаСO 3 ↓ + СO 2 + Н 2 O

Получившиеся нерастворимые карбонаты участвуют в образовании осадочных горных пород, что выводит углекислый газ, а вместе с ним и углерод из круговорота на длительное время, если местная концентрация СO 2 будет невелика и не произойдет перехода карбонатов в гидрокарбонаты.

В настоящее время считается, что биогеохимический цикл углерода нарушен за счет антропогенных факторов, так как количество поступающего в атмосферу СO 2 за счет хозяйственной деятельности человека увеличивается до 10% от ежегодного нормального уровня биогенного выделения этого газа и это количество продолжает неуклонно возрастать.

Однако неблагоприятное действие деятельности человека на процессы, регулирующие круговорот углерода на Земле, смягчаются процессами связывания оксида углерода(IV), протекающими в океане.

Итак, круговорот углерода в природе является системой динамических, достаточно устойчивых процессов, при этом локальные изменения происходят относительно легко, а глобальные процессы легко компенсируют локальные воздействия. И тем не менее необходимо корректировать производственную деятельность человека с целью снижения возможностей нарушения естественного хода процессов круговорота углерода и других элементов, с ним связанных.

Круговорот углерода в природе

Важнейшие биогеохимические круговороты

Углерод - основная составля­ющая углеводов, белков, нуклеиновых кислот и других жизненно важных органических соединœений.

В основе круговорота угле­рода в природе в основном лежат реакции окисления и восста­новления углерода. Принципиальная схема круговорота углерода в приро­де приведена на рис. 3.

Углекислый газ из атмосферы в процессе фотосинтеза превращается в органическое вещество растений:

Расте­ния (органическое вещество) поедаются животными:

Органическое вещество в ре­зультате (сжигания) жизнедеятельности организмов, разложения трупов и дру­гих процессов выделяется в атмосферу в виде СО 2 (и Н 2 О), и запасается в виде гумуса, торфа. Последние являются основой превра­щения их в каменные угли, нефть и газы.

Источниками поступления углекислого газа в атмос­феру является также вулканическая деятельность, разложение органических веществ, Мировой океан и деятельность че­ловека, связанная со сжиганием угля, нефти, газа.

Круговорот углерода в гидросфере значительно сложнее континœентального, поскольку возврат этого элемента в виде СО 2 зависит от поступления кислорода в верхние слои воды как из атмосферы, так и из нижелœежащей толщи воды. По этой причине в целом показатели годичного круговорота углерода в Мировом океане почти вдвое ниже, чем на суше.

В водных сис­темах огромное количество угольной кислоты (Н 2 СО 3) за­консервировано в виде известняков и других пород. Часть углерода ускользает из круговорота и «уходит в геоло­гию» в виде торфа, угля, нефти и карбонатных отложе­ний водных систем.

Между сушей и Мировым океаном происходит постоянная миграция углерода. Здесь преобладает его вынос с суши в океан в виде карбонатов и органических соединœений. Поступление углерода из Мирового океана на сушу осуществляется только в виде СО 2 , переносимого воздушными течениями. СО 2 атмосферы и гидросферы полностью обменивается живыми организмами за 395 лет.

Суммарное количество СО 2 (т) составляет:

в атмосфере - 2,3 ∙10 12

в Мировом океане - 1,3 ∙10 14

в литосфере (в связанном состоянии) - 2 ∙10 17

в живом веществе биосферы - около 2,3 ∙10 12


Рис.3. Схема круговорота углерода

Основные отрицательные последствия нарушения кру­говорота углерода человеком проявляется в сокращении площадей лесов, разрушении почвы, сжигании топлива. Часть углерода накапливается в атмосфере в форме угле­кислого газа и метана, обуславливая парниковый эффект.

За геологический период с момента появления жизни на Земле углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение 3-4 лет растения усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, за четыре года может обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за данный срок завершает свой цикл (Гришина, 1976). Цикл углерода гумосферы охватывает 300-400 лет. При этом цикл биологического круговорота углерода не замкнут: данный элемент часто выходит из круговорота на длительный срок в виде карбонатов, торфов, углей, гумуса. С другой стороны нарушение цикла происходит и благодаря поступлению в атмосферу глубинного углекислого газа и окиси углерода.

После рассмотрения свойств и особенностей углеродсодержащих соединœений следует еще раз подчеркнуть ведущую роль углерода-органогена № 1:

во-первых, атомы углерода формируют скелœет молекул органических соединœений;

во-вторых, атомы углерода играют ключевую роль в окислительно-восстановительных про­цессах, поскольку среди атомов всœех органогенов именно для углерода наиболее характерна окислительно-восстановительная двойственность.

Круговорот углерода в природе.

Основным резервуаром углерода являются горные породы; в них, по существующим оценкам, его содержится примерно 75 квадриллионов тонн. Еще 5 триллионов тонн содержится в горючих полезных ископаемых - угле, нефти, газе и торфе. Примерно 150 млрд. т приходится на верхний слой донных океанических осадков. Эти запасы в обычных условиях недоступны для живых организмов. Для них важнее «оборотный пул» углерода, представленный на рисунке.

Главный источник углерода для живых организмов - это диоксид углерода (углекислый газ), содержащийся в атмосфере и растворенный в поверхностных водах. В процессе фотосинтеза зеленые растения, водоросли и цианобактерии превращают это неорганическое вещество в углеводы, из которых затем образуется углеродный скелет всех прочих органических молекул. Фотосинтетическая ассимиляция диоксида углерода компенсируется его выделением в процессе дыхания, что способствует поддержанию природного равновесия. Однако не весь фиксированный диоксид углерода возвращается в атмосферу за счет дыхания. В анаэробной среде, например в болотах или на слабо освещенном дне стоячих водоемов, минерализация органики идет очень медленно, и она накапливается в виде ила или торфа. В определенных условиях через длительный период времени эти осадки могут образовать залежи ископаемого топлива.

В океанах основными механизмами поглощения диоксида углерода из атмосферы является фотосинтез, главным образом фитопланктонный, и растворение в поверхностных водах. Значительная часть этого связанного диоксида углерода быстро возвращается назад - непосредственно из раствора или в результате дыхания. Однако, как и в наземных экосистемах, некоторая доля углерода надолго задерживается, например при погружении холодных поверхностных вод в глубину или в составе образуемых морскими организмами карбонатных структур (раковин, кораллов и т. д.), которые со временем превращаются в горные породы типа известняка.

Скорость переноса углерода между его резервным и оборотным пулами может меняться из года в год в зависимости от климатических флуктуации. На этот баланс влияет также деятельность человека, особенно изменение землепользования (сведение леса или лесопосадки), использование ископаемого топлива и производство цемента. Судя по имеющимся данным, именно человек обусловливает значительный рост содержания диоксида углерода в атмосфере с эпохи промышленной революции.

Повышение скорости мобилизации углерода из его резервуаров типа ископаемого топлива и карбонатов (при производстве цемента) и потенциальное влияние этого ускорения на глобальный климат и экосистемы - весьма актуальные темы ведущихся сейчас экологических исследований и дебатов. Преобладает мнение, что сохранение нынешних темпов поступления в атмосферу диоксида углерода грозит весьма серьезными последствиями для всей планеты. Правительства предпринимают усилия к сокращению выбросов диоксида углерода промышленностью и масштабов использования ископаемого топлива в целом за счет более широкого применения альтернативных видов энергии, например солнечной и ветровой.

Аллотропные модификации

Общие сведения, аллотропия углерода
Углерод (лат. carboneuia) известен с глубокой древности. В земной коре его содержится примерно 0,35% по массе. В природе углерод встречается в свободном и связанном состоянии, главным образом в виде карбонатов (мел, известняк, мрамор), в каменных и бурых углях, торфе. Углерод входит в состав нефти, природного газа, воздуха, растений, организмов человека и животных. Его соединения составляют основу живой природы - флоры и фауны.
Атом углерода имеет 6 электронов, 2 на внутреннем слое (1s2), а 4 (2s22р2) - на внешнем. С наиболее активными металлами углерод проявляет степень окисления -4. Углерод способен соединяться между собой с образованием прочных длинных цепей.
В отличие от кислорода и азота углерод при обычных условиях не образует молекул, у него атомная кристаллическая решетка. Существуют четыре аллотропных модификации углерода: алмаз, графит, карбин и букибол.
Кристаллическая решетка алмаза состоит из атомов углерода, соединенных между собой очень прочными s-связями. В кристалле алмаза все связи эквивалентны и атомы образуют трехмерный каркас из сочлененных тетраэдров. Алмаз - самое твердое вещество, найденное в природе.
Графит представляет собой темно-серое с металлическим блеском, мягкое, жирное на ощупь вещество. Хорошо проводит электрический ток. В графите атомы углерода расположены в параллельных слоях, образуя гексагональную сетку. Внутри слоя атомы связаны гораздо сильнее, чем один слой с другим, поэтому свойства графита сильно различаются по разным направлениям.
Карбин - получен искусственным путем. Существует два вида карбина: поликумулен =С=С=С=С= и полиин -C=C-C=C-C=C-.
Букибол - получен в 1985г., имеет сферическую форму (как футбольный мяч), состоит из 60 или 70 атомов углерода.
Углерод в виде сажи, кокса, древесного угля, костных углей широко используется в металлургии, синтезе органических веществ, как топливо, в быту.



Рекомендуем почитать

Наверх